Weekly 2 CC1 # Name **MONDAY** - 1. In the problem 12 the bars stand for ______. Evaluate 12 = _____ - 2. The term opposite means the same as ______. What is the opposite of 12? _____ - 3. 8 + (-5) = _____ Show your work on the number line. Show your work on the number line. - 4. -3 + (-4) = Show your work on the number line. Show your work on the number line. _____ 5. -25 + 9 = _____ 6. 7 + (-16) = ____ 7. -15 + 28 = ____ 8. -116 + (-45) = _____ True or False? If it is false...explain why it is false. - 9. a + b = c If a and b are both negative then c is negative. - 10. a + b = c If a is positive and b is negative then c is positive. - 11. ____ a + b = c If a and b are both positive then c will NEVER be negative. REVIEW - 12. In $10 + 4b + c^3$ the 10 is a ______, the 4 is a ______, the b and c are called ______, and the little 3 is an ______. Evaluate if b = 5 and c = 4. ______. - 14. $8(2 + 4 \times 2) 3^2 =$ - **TUESDAY** 1. To subtract integers you - 7. Rewrite the following problem as an addition problem then solve: -25 3 (-7) = - 8. Evaluate the additive inverse of 26 minus the absolute value of 50. _____ **REVIEW** - 12. Convert $\frac{3}{16}$ to a decimal _____ and a percent _____. - 13. $2(15 4 \times 3)^2 + \frac{6 + 4 \times 6}{5 \times 2 2^3} =$ 14. Evaluate 5jd when j = 4 and d = 3. _____ # WEDNESDAY 3. $$\frac{-36}{-9} =$$ 2. $$-5(-6) =$$ _____ 3. $\frac{-36}{-9} =$ ____ 4. $24 \div (-8) =$ ____ 5. $\frac{-2(-9)}{(-3)} =$ ____ 6. The additive inverse of 7 multiplied by the absolute value of 4 divided by the opposite of 2 equals ____ 7. Would (-5)¹⁷ be positive or negative? _____ Why? 8. $$80 \div (-2) \div (-4) \div (-2) =$$ 9. $$3 \times (-1) \times 4 \times (-2) =$$ ## **REVIEW** 10. Convert 507.9% to a decimal _____ and a fraction _____. 11. $$-2 + 5 - 4(7 - 2(3 - 6)) =$$ 11. $$-2 + 5 - 4(7 - 2(3 - 6)) =$$ 12. Evaluate $8gf + \frac{f}{g}$ when $g = 2$ and $f = -10$. _____ 13. In 94 the 9 is the ______, the 4 is the ______, it represents the math problem _____, it is read _____ when evaluated. 14. The exponent 2 can ALSO be read as _____ and the exponent 3 can ALSO e read as _____ 1. A number right next to (multiplied by) a variable is called a . . 2. Two things on top of each other means ______. 3. A letter that takes the place of a number or numbers is called a 4. Top number goes _____ 5. Two things right next to each other means _____ 6. To add, subtract, or compare decimals you___ 7. Fill out the Graphic with the rules to convert between fraction, decimal, and percent. 8. The opposite of 45 is _____. 9. The additive inverse of 45 is _____. 10. The absolute value of 45 is _____. 11. $$-12 - 5(4 + (-2)) =$$ 12. $$-6(-2) + 4(-5) =$$ 13. $$-2(5 - 2 \times 4)^3 =$$ 14. 5.32(-10.8) = ______ Do you have to line up the decimal? Yes Is the answer positive or negative? Positive Negative How many digits are to the right of the decimal in the answer? 16. $$-1\frac{2}{5} + (-7\frac{4}{9}) =$$ 15. $$-29.617 \div (-0.7) =$$ 16. $-1\frac{2}{5} + (-7\frac{4}{9}) =$ 17. $-4\frac{1}{3} - 9\frac{5}{8} =$